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Abstract
In this paper, we apply the use of the SIRD model to create an analysis of
the governmental COVID-19 data of the Espírito Santo state in Brazil. By
using the public data on the pandemic, provided by the local and federal
government, and setting the social isolation parameters of the simulation to
match the non-pharmaceutical and social distancing decisions made by the
government, we aim to understand better the reality that took place, by
generating graphs and analysis within the SIRD model. Having a deeper
knowledge of the pandemic and its toll on the state will allow the discussion
of governmental decisions related to social isolation and the effects of a more
precise social distancing parameters in the model.
Keywords: SIRD model, COVID-19, Epidemic simulation, Data analysis,
Social distancing

1. Introduction

The year of 2020 challenged the whole world to face an unpredictable and
unwary disease. SARS-COV-2 was responsible for an unforeseen pandemic,
a scenario that made both scientific and government spheres to look for
solutions as they were already dealing with it [1]. One year later, we have
a much better understanding about the infection and its spread. There are
several vaccines developed by different labs and researchers, and it is expected
that the population will be immune by mid-2022 [2]. The scenario that took
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place in Brazil was bad compared to the world, many states had high lethality
rates due to the large number of people in vulnerable situations [3].

The pandemic and its implications seem to be something entirely new but,
looking through history, humanity has dealt with many large-scale infectious
diseases. The Plague, Cholera and Influenza are major examples of this
reality. Quarantine is nothing new to the human race, it is new only in scale
to the globalised modern society [4].

Throughout 2020, several questions were asked about which were the
riskiest moments to get exposed and what decisions regarding the limitation
of travel [5] were most effective controlling the infection. Therefore, when
researching the COVID-19 data of the studied state, it became clear that
there were plenty of gaps to comprehend before blindly accepting the stag-
nant situation. The whole medical environment went through changes on
how to approach suspected cases and how to deal with ICU capacity, while
documents and guidelines were constantly being made to help during all these
months [6]. It is reasonable to conclude that the society in general had no
clear solution on how to display data and define the optimal steps to deal
with the SARS-COV-2 and its implications during the first months of the
pandemic.

Nevertheless, it was shown to be very important to study COVID-19 in all
aspects, from social distancing and non-pharmaceutical measures to symp-
toms patterns. Being able to predict curves of infection, understand how
each government policy affected the number of cases and modelling the next
steps of immunisation became key in dealing with this danger [7]. Modelling
is a very important approach to predict the outcome while managing possi-
ble decisions and understanding the rates, and it became crucial to minimise
deaths when handling isolation, vaccination and distribution of medical facil-
ities. Therefore, it was a very logical subject to study, since the coronavirus
is a current topic and there is plenty of data being provided from the whole
world.

One of the most used models to predict and understand infectious diseases
epidemics is the SIR model [8] and its variations. It stands for Susceptible,
Infected and Recovered [9]. Other epidemics modelling methods can be used
to study disease spread, such as the Susceptible-Infected-Susceptible (SIS)
[10], the Bayesian approach [11], auto regressive integrated moving average
(ARIMA) [12] [13] and Random Forest time series [13]. In the COVID-19
context, a systematic review observed that compartmental models, such as
SIR and its variations, have been the most used ones when compared to

2



statistical, AI-based, Bayesian, hybrid, agents-based and Network models
[14].

Because of the geographic location of our university, academic research on
a state level is encouraged, so the state selected for the research is the state of
Espírito Santo, in the southeast region of Brazil. The state has approximately
forty-six thousand square kilometres with a resident population around four
million [15], a small but wealthy state inside the Brazilian reality.

The state of Espírito Santo is an educated state with above Brazilian
average HDI [15], and its proximity to major Brazilian states, such and Rio
de Janeiro, Minas Gerais and Bahia, makes it even more relevant. The
state of Espírito Santo has been one of the most transparent in Brazil in
terms of numbers and disease data [16]. It has also one of the highest in-
dex of human development nationally [15], which allowed it to have better
options when dealing with ICU cases, mobilising medical staff and secluding
COVID-19-only hospitals. Since early March-2020, there is a governmental
official online panel updated daily with information regarding suspected and
confirmed cases all across 78 cities within the state. It is provided by the
government and has a handful visual representation of the spread evolution
and population statistics, as well as a CSV file for download containing a
quick description of each notified case that has ever been reported to the
health system [17].

Each government or data source has its own parameters and measuring
devices, which means when comparing raw data between different countries,
it will not be automatically comparable. For example, the Italian panel [18]
differs in many ways to the one provided by the World Health Organization
[19], therefore there is discrepancy between how and what you can research
and present.

When compared to other data sources of the world, the Espírito Santo’s
panel lacks several information that are commonly seen in global databases,
but the existence of this panel enabled the application of SIR model, fur-
ther conclusions about government decisions and how the infection was dealt
within the state.

The SIR model is a model that employs the usage of algebraic and sta-
tistical theorems to draw epidemic evolution curves. The model framework
exploits several equations to define parameters for the model [20]. These
parameters indicate key points to the understanding of the pandemic, vary-
ing by type of study and availability of each data. Consequently, not all
parameters are used in all situations because, for example, some assume the
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existence of a vaccine, which is something not available in some cases.
In the beginning of 2020, a library using Python programming language

was written by worldwide researchers, making more accessible to others the
study of the COVID-19 spread trough SIR models. The library was named
CovsirPhy GitHub repository [21].

This Python library for COVID-19 enables scenario analysis for data-
informed decisions. The main data source proposed for this project is a uni-
fied database of COVID-19 numbers from all over the world, called COVID-
19 Data Hub [22]. The hub contains the COVID-19 standard variables, gov-
ernment policies trackers [23] and other features for better data visualisation
and applicability. Designed for academic and practical purposes, contain-
ing information in all three administration levels, it generates error logs to
spot mismatches in the official data and inform authorities. All sources are
properly documented, along with their citations. The data regarding the
Brazilian social-distancing policies in this database has put some restrains
in its applicability, since some of the parameters used are not specified by
province/state, but for Brazil as a whole.

Understanding curves about immunisation and how rates of infection
changed throughout time will expand the scope of analysis, granting glimpses
of solutions for the current COVID-19 pandemic and for future epidemics.

2. Objectives

The objective is to apply the SIRD model to Espírito Santo’s COVID-19
data to understand and provide explanations regarding the use of COVID-
19 data and the non-pharmaceutical governmental social distancing policies
during the outbreak. Firstly, clarifying how data was collected and exposed
by the Espírito Santo government, then answering questions regarding the
understanding of dispersion and infection rate graphs.

Data modelling is the main focus of research. The application of a SIRD
model to understand the reality that took place generating results and pre-
dictions is the main goal. But we also point out how data is provided by the
government and medical facilities, such as what to do in order to generate
and study this data in a most productive way.

Analysing the government official decisions, regarding social distancing
and non-pharmaceutical measures, by correlating them to the rates of infec-
tion (α), recovery (β) and lethality (γ) to fit in the SIRD model we hope
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to identify its effectiveness. Therefore, by the end of the research, the time
frame of how these rates evolved will be provided.

Another objective is the implementation of the state of Espírito Santo
COVID-19 Panel data into the COVID-19 Data Hub. By making this data
available worldwide we hope to stimulate and help researches and studies.
With the results of this research, we hope to add valuable information re-
garding coronavirus to the public.

This article is organised as follows. In Section 3, the bases of the SIR
model, some of its variations, parameters and equations are presented fol-
lowed by exposures of the government policies and decrees that took place
in the state discussed in this study in Section 4. A literature review of corre-
lated studies is in Section 5, allowing the discussions of some of the possible
methods used by researches to model the outbreak. The GitHub CovsirPhy
library used for the simulations is presented in Section 6. At the Data Sec-
tion 7, further explanation about the variables and the source is given. The
methods Section 8 clarifies the process used to model the data. In the Result
Section 9 the graphs, parameters and comparisons are exposed. Conclusions
and future possible works are discussed in Section 10, allowing the expan-
sion of the scope on the topic and opening the possibility for new suggested
researches.

3. SIR model and its variations

Since the beginning of the 2020 pandemic, many specialists in diverse
areas have been accompanying the spread both in local and global realities.
Regarding the Brazilian reality, studies were done in different states such as
São Paulo [24] and Rio de Janeiro [25]. A technical note [26] made by by Fed-
eral University of Espírito Santo (UFES) members and other collaborators,
that provided predictions for the Covid-19 cases, deaths and spread with
data from Espírito Santo was developed in the early studies of the pandemic.
Local level applications of compartmental models provided guidelines to this
research. The capacity to model computer programs and convert raw data
into contributions for the comprehension of the COVID-19 outbreak allowed
prominent advances in the research of the virus, its unfolding consequences
and counter measures effectiveness [27].

The first task is to understand how and when SIR model can be used and
how precise it can be. The model has a wide range of features and variables
[20] that can be used depending on the goal of the research and the available

5



data. Even in the simplest form, SIR model is known for generating results
and predictions that represent reality [28].

For the basic SIR model, there are some main concepts necessary to
understand the algorithm (Tab. 1).

Table 1: Main definitions of the SIR model.
Main

Variables
in

SIR model

Definition Description

S(t) Susceptible
Individuals that have never
been infected and are able
to catch the disease

I(t) Infected Individuals that are infected
(confirmed cases)

R(t) Removed
Individuals that had the disease
and either deceased or
recovered (assumed to be immune)

N Population Total number of individuals

R0

Basic
Reproductive

Number

Average number of individuals infected
by one case in a totally susceptible
population in absence of interventions
aimed at controlling the infection

α Transmission rate The rate in which
the transmissions happen

β Recovery rate
The rate in which
infected individuals
recover from the disease

SIR stands for susceptible (S), infected (I) and removed (R). The suscep-
tible population (S) is the number of individuals susceptible to be infected
at a defined time, once these individuals are infected with the disease they
are considered infected (I), this number consider both asymptomatic and
symptomatic infected individuals [9]. Once the individual recovers and no
longer has the disease or he deceases from it, he is considered removed (R),
the individuals that recovered are assumed to be immune for life [20]. The
assumption that the recovered individuals are immune for life is a limitations
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of the base model considering that Covid-19, such as other diseases, is ca-
pable of reinfecting a recovered person. The method uses the transmission
rate (α) and recovery rate (β), both vary accordingly to the disease selected.
Mitigation strategies affect the transmission rate (α) [29].

The SIR model belongs to the class of compartmental models because the
population under study is being divided into compartments (S, I, and R) and
with assumptions about the nature and time rate of transfer of individuals
from one compartment to another [30], as shown in Fig. 1.

S I R
α β

Figure 1: SIR schematic, susceptible (S), infected (I) and removed (R)

The variables in the model correlate, and some assumptions are necessary
in order to achieve results. One important assumption in the basic model is
that the population is fixed [20], and the relations can be expressed by the
following equations that govern the model.

S + I +R = N (1)

dS

dt
= −αSI (2)

dI

dt
= αSI − βI (3)

dR

dt
= βI (4)

where S, I, R and N are from Tab. 1 and the Eq. 2, 3 and 4 are differential
equations. In the SIR model, these equations set the ratio that individuals
are transitioning from one group to another at a defined time (t) in terms of
its parameters (α) and (β). This relation can be seen in Fig. 2 as a graph,
plotting the integration of each compartment differential equation over time,
given initial conditions and the parameters, where it is possible to forecast
an infectious disease spread.
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Figure 2: Plot for the basic SIR (susceptible, infected, and recovered) model. Model
parameters are α, the transmission rate (α = 3), and β, the recovery rate (β = 0.4).

The Basic Reproductive Number (R0) is an infectious disease parameter.
The parameter represents the average number of people infected by one case
in a completely susceptible population. Based in conditions where there are
no safety measures taking place, such as social distancing, mandatory mask
use and others safety courses of action [20]. This numeric value allows to
understand how infectious is the disease and its growing pace in case of an
outbreak. Once R0 gets close to the 1 threshold, the chances of an epidemic
or an endemic spread rise [31].

There are variations in the SIR method to be considered depending on
the data available and reality of the decease. Some of the most used ones are
SIR-D [32, 33] and SEIR [34]. The existence of a vaccine and herd immunity
are also variables that can alter the basis model [20]:

• SIRD

– (R) stands only for the recovered individuals
– The (D) category, defined by the number of deaths, is included in

the model
– The lethality rate (γ) is added as a parameter
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• SIR with birth and death

– Assumes all deaths are natural
– The constant rate of birth and death (M) is considered

• SIR with constant Vaccination at Birth

– Assumes that a portion (p) of population is vaccinated at birth

• SIR with Saturated Susceptible population

– Birth and death are not constants
– Assumes that susceptible individuals are born at a rate M(S,I,R)

• SEIR

– The (E) category, defined by the number of exposed individuals

• SIR with Delay

– Assumes that once a individual from the susceptible population
(S) is infected he only becomes a part of the infected population
(I) after a certain span of time

• SIR with Quarantine (SIQR)

– Assumes that some individuals are under quarantine, therefore
altering the values of the infection rate parameters

There are several options of possible examinations by altering the data
provided when applying the SIR model. But before discovering which sat-
isfactory conclusions we could achieve, we needed to understand how data
was collected, and how the parameters of isolation and risk exposure were
counted. Infection happens based on how much the susceptible population
is at risk of getting contaminated [20]. The SIR approach was used in the
early stages of the pandemic in Brazil, it was shown that the proportion of
asymptomatic individuals affects the amplitude of the peak of symptomatic
infected, suggesting that it is important to test the population [35].
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4. Public policies and social isolation

Social isolation can be viewed as the percentage of available time people
are getting at risk, measured by days of work, study and others activities per
week. Its impact on a pandemic outbreak cannot be overlooked and control
strategies must be put in place as quickly as possible in order to control
the transmission rate [36]. It is also defined, by how the rate of infection is
changing, likely provoked by usage of masks, hand sanitisers and other safety
measures. The different SIR models take into account those variables as
inputs, and use them to refine and predict the number of infected, deceased,
healthy individuals and others numbers depending on which SIR is being
used [9].

The non-pharmaceutical policies established by the government, such as
restrictions to entertainment or commercial opening hours, affect deeply the
rate of infection (α) and, therefore, the predictions generated by simula-
tions models [37], so it is key to understand the impact of this measures.
With these measures impact identified and correlated to the time they were
imposed, conclusions can be made about timing in civil measures and how
effective they were. In the beginning of the pandemic the government ac-
tions were made by official decrees and ordinances until the risk map system
was implemented, as seen on Table 2. All the government’s official decrees,
ordinances and law projects related to the pandemic were available at the
official coronavirus panel [17].

To implement the risk map the state was divided into smaller counties
and, by using a Threat × Vulnerability matrix, they were to be classified
weekly. The Threat axis is based in the number of cases per one million indi-
viduals and the Vulnerability axis is based in the percentage of occupied ICU
beds. Based on this matrix the counties are classified as low risk, moderate
risk, high risk and extreme risk; symbolised by, green, yellow, red and dark
red respectively. Therefore, starting from April 19, 2020, the government
releases a weekly update of the state risk map 3, in which each county is
painted in the colour representing the outbreak reality at that point in time.

The risk classifications made the counter-measures automatic. The gov-
ernment defined a different set of actions for each of the levels, each week
a new map was released and, if the region changed from a lower risk to a
higher one, new social distancing rules would be added. This also affected
the data by allowing each region to have different transmission rates and
social distancing parameters. The main set of measures of each level are:
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Table 2: Espírito Santo main decrees and ordinances prior to risk map
Date Description

2 March 2020 Brazil Federal Government declares National Public
Health Emergency Status (ESPIN)

13 March 2020 (Decreto 4593-R) Definition of possible governmental
measures

17 March 2020

Presential Public Schools Classes suspended (210 days
with extensions)
Concerts, movie theaters, night clubs and similar events
suspended (210 days with extensions)

19 March 2020
(Decreto 4604-R) Public non-essential services and elec-
tives surgical procedures procedures suspended (120
days)

20 March 2020 (Decreto 4605-R) Lockdown (15 days)

02 April 2020 (Decreto 0446-S) Espírito Santo government declare
Public Health Emergency Status

03 April 2020 (Portaria SESA 058-R) safety measures recommenda-
tions for the commercial and service sectors

06 April 2020 (Portaria SESA 062-R) safety measures recommenda-
tions for the industrial sector

11 April 2020 (Decreto 4626-R) Commercial and services sectors sus-
pended (49 days with extensions)

19 April 2020 (Portaria SESA 068-R) implementations of the risk map
for the state

30 April 2020 (Decreto 4644-R) 30 days extension of Decreto 4626-R
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Figure 3: Risk Maps of Espírito Santo from April 20, 2020 to May 4, 2020, showing
municipalities with low risk (green), moderate risk (yellow) and high risk (red), with no
extreme risk (dark red) yet.

• Low Risk (green regions)

– Only one client allowed per 10 meters square in small commercial
facilities

– Only once client allowed per 14 meters square in shopping malls
and big galleries

– implementations of sanitary barrier between regions and in the
main roads

• Moderated Risk (yellow regions)

– Only one client allowed per 10 meters square in small commercial
facilities

– Only once client allowed per 14 meters square in shopping malls
and big galleries

– Big galleries and shopping malls can only open during one shift
– implementations of sanitary barrier between regions, in the main

roads and intercity bus stations
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• High Risk (regions red)

– Public non-essential services suspended
– Only essential services are allowed to function normally
– Commercial facilities can only function in the delivery or drive-

through systems
– Big galleries and shopping malls must be closed
– Public transportation workers that are sixty years old or more

must be reallocated
– Public transportation that run an AC system are taken out of

circulation
– implementations of sanitary barrier between regions, in the main

roads and intercity bus stations

• Extreme Risk (dark red regions)

– Public non-essential services suspended
– Essential services must be closed by 8 pm
– Commercial facilities can only function in the delivery system
– Big galleries and shopping malls must be closed
– Public transportation workers that are sixty years old or more

must be reallocated
– Public transportation that run an AC system are taken out of

circulation
– Public transportation is shut down during weekends
– implementations of sanitary barrier between regions, in the main

roads and intercity bus stations

The details regarding the peculiarities of the data, its origin and how this
social distances measures can affect the SIR model will be better explained
in future sections of this article.
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5. Related works

Studies made prior to this one, and its results, encouraged deeply our
research. Academics in different countries around the world have put effort
studying this outbreak in order to understand the pandemic [7], identifying
possible counter measures [29] and look for possible solutions for the future
to come, since it is now clear that humanity is susceptible to this scenario.
Some studies have used the basic SIR model and its variations in country
level [38] and province/state level [24] [25] to look for reliable predictions.
By making use of mathematics tools some studies aimed to better simulate
reality. When using SIR to forecast the maximum number of active cases and
peak time of the COVID-19 outbreak, a Logistic growth curve model was
used for better accuracy in short-term projection while a Time Interrupted
Regression model evaluated the impact of lockdown and other interventions
[39].

Other studies used a Bayesian Susceptible-Infect-Removed model to spec-
ify transmissions rates and spatial association including neighbouring county
transmissions [40]. A hybrid SIR-Bayesian model [41] was also used to sim-
ulate Brazilian reality, the fused model had the goal to take in account the
under-reported cases. Other studies had a different proposed solution to the
same problem of unaccounted cases in Brazil [42, 43]. During the course of
the pandemic, it was identified that the Brazilian data had intrinsic problems:
the country is to big, many states did not have a reliable counting of cases
and there was a big delay in the reports. Researches proposed models [44]
to forecast the pandemic by taking account the notifications delay in the re-
ports of data aiming to fill this gap in the available information. The state of
Espírito Santo has small land area and its panel [17] was implemented early,
therefore these structural problems in the data were not taken in account in
this research.

Many varieties of studies were conducted in order to analyse the pandemic
outbreak, a systematic and critical review of studies encompassing more than
80 countries and 240 articles [14] observed that, out of the main possible
approaches, the compartmental models, that include SIR and its variations,
are the most used for COVID-19 simulation/forecasting and that most of the
studies published had a focus on data from Asian, followed by Europe.

Additionally, some researches made use of machine learning to achieve
their objectives. Researchers used Machine Learning and variations of the
SIR model the forecast scenarios and then compare them [9], another ap-
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proach was to use a combination of both to propose a model for smart health
care and the well-being of the citizens, aiming to predict if the virus will
spread in the population or die out in the long run [45]. The use of a hybrid
model between SIR, adaptive network-based fuzzy inference system (ANFIS)
and multi-layered perceptron-imperialist competitive algorithm (MLP-ICA)
was proposed to predict time series of infected individuals and mortality rate
[46]. To this day there is still not a consensus on a optimal model.

The base model that suits the best the propose of this research and the
available data is the SIR model for epidemics. Other models may not be
able to proper represent the reality, as said by Odagaki [47] "COVID-19 has
unusual characteristics: (1) transmission of the virus by presymptomatic pa-
tients and existence of asymptomatic infectious patients, and (3) patients,
symptomatic or asymptomatic, can be identified by polymerase chain reac-
tion (PCR) test. Because of these characteristics, the number of infected
cannot be obtained directly, the number of daily-confirmed new cases and its
time dependence are the only essential data. Therefore, COVID-19 showing
these characteristics may not be represented properly by the SIR and the
SEIR models which assume that the number of patients is known and do not
treat quarantined patients as a compartment."

A study was made with the Brazilian data, including the Espírito Santo
one, using a SEIRD mathematical model the analyse some states [48]. The
research concluded that the Espírito Santo state would not have problems
regarding ICU demand, but that was not the case in reality [17]. Therefore,
we believed that using another variation of the SIR model and take the
government measures into account could provide an improvement over this
previous result.

The SIQR model allows to adjust quarantine data and parameters [49],
in this way it is possible to calibrate the model with the details of the social
distancing, such as school closures, lockdowns and other non-pharmaceutical
measures, in each specific case. The SIQR has been successfully applied to
model the COVID-19 pandemic in in other countries, such as Japan [38], Italy
[50] and in the state of Rio de Janeiro - Brazil [25]. Although both states - Rio
de Janeiro and Espírito Santo - are neighbours and share some similarities,
the governmental decisions regarding the pandemic outbreak were done at
state level, therefore the parameters for each state are not the same.

By analysing the previous researches, the variations of the SIR method
and the available data, we chose the SIRD mode. The SIRF model was
an option, but the characteristics of the available data for the state much
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favours SIRD, since the SIRF method takes into account the post deceased
confirmed cases and its parameters.

The model schematics and variables differ from the basic one presented
earlier, the schematic can be seen on Fig. 4 and the variables are defined in
Fig. 3.

Table 3: Main definitions of the SIRD model.
Main

Variables
in

SIRD model

Definition Description

S(t) Susceptible
Individuals that have never
been infected and are able
to catch the disease

I(t) Infected Individuals that are infected
(confirmed cases)

R(t) Recovered Individuals that had the disease
and recovered (assumed to be immune)

D(t) Fatal Fatal cases (confirmed deaths)
N Population Total number of individuals

R0

Basic
Reproductive

Number

Average number of individuals infected
by one case in a totally susceptible
population in absence of interventions
aimed at controlling the infection

α Transmission rate The rate in which
the transmissions happen

β Recovery rate The rate in which infected
individuals recover from the disease

γ Lethality rate The rate in which
infected individuals decease

The population (N) is assumed to be fixed and the equations that rule
the model are

S + I +R +D = N (5)

dS

dt
= −αSI (6)
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Figure 4: SIRD schematic, susceptible (S), infected (I), recovered (R) and deaths (D)

dI

dt
= αSI − (β + γ)I (7)

dR

dt
= βI (8)

dD

dt
= γI (9)

where S, I, R, D and N are from Tab. 3 and the Eq. 6, 7, 8 and 9 are
differential equations.

6. CovsirPhy library

CovsirPhy is a Python library for COVID-19 data analysis with phase-
dependent SIR-derived ODE (ordinary differential equation) models, main-
tained by contributors all over the world [21]. Developers make the library
available for download on a GitHub repository 1, and all the necessary data-
sets by country are retrieved from public databases.

The library contains are able to simulate the following SIR variations:

• SIR

• SIRD

• SIRF

• SIRF with exposed/waiting cases

1https://github.com/lisphilar/covid19-sir

17



• SIR-F with vaccination

• SIR-F with re-infection

The CovsirPhy code, used for modelling in this article, extracts isola-
tion parameters from the "Oxford COVID-19 Government Response Tracker
(OxCGRT ) [23]. It is a School founded in 2010 that aims to provide gov-
ernments, and public policy-making with better knowledge and information
about the world. A department from the University of Oxford (UK) that
ranges science from computing and medicines to social science.

Throughout the pandemic, this School has been tracking government de-
cisions and social measures from about 70 countries, and making it available
for studies and comparisons. Therefore, having the social isolation parame-
ters being drawn from this database was an ideal choice to correctly model
the COVID-19 data. These predefined values were considerable reliable and
useful for the CovsirPhy package, making it possible to calculate the final
index.

The final index that is used inside the CovsirPhy package, extracted from
the Oxford hub, is the stringency index. It focuses on the availability of
transportation and social activities, relying on the population to follow the
current social measures [51].

The stringency index (I) is calculated using 8 containment and closure
policy indicators (C1-C8) and one health system policies indicator (H1) [23].
Each one of the indicators refers to a specific situation regarding the so-
cial distance policies and governmental actions as seen on Tab.4. Other
indexes were developed to measure government decisions regarding contain-
ment, economic support and health policies; such as the economic support
index, legacy stringency index, containment and health index and govern-
ment response index [23].

The value of the stringency index (I) is the average of these nine sub-
indices

I = 1
9

9∑
j=1

Ij (10)

where I is the stringency index, and Ij is a sub-index j pertaining to an
individual policy indicators from Tab. 4.
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Table 4: Stringency Index indicators

Main ID Description Values

C1 Closings of schools
and universities

0- no measures
1- recommend closing or all
schools open with alterations re-
sulting in significant differences
compared to non-Covid-19 oper-
ations
2- require closing (only some lev-
els or categories)
3- require closing all levels

C2 Closings of workplaces

0- no measures
1- recommend closing
2- require closing for some sectors
3- require closing for all-but-
essential workplaces

C3 Cancelling public
events

0- no measures
1- recommend cancelling
2- require cancelling

C4 Limits on gatherings

0- no restrictions
1- restrictions on very large gath-
erings (above 1000 people)
2- restrictions on gatherings be-
tween 101-1000 people
3- restrictions on gatherings be-
tween 11-100 people
4- restrictions on gatherings of 10
people or less )
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C5 Closing of public
transport

0- no measures
1- recommend closing
(or significantly
reduce volume/route/means
of transport available)
2- require closing

C6 Confinement

0- no measures
1- recommend not leaving house
2- require not leaving house with
exceptions for daily exercise, gro-
cery shopping, and ’essential’
trips
3- require not leaving house with
minimal exceptions

C7
Restrictions on in-
ternal movement
between cities/regions

0- no measures
1- recommend not to travel be-
tween regions/cities
2- internal movement restrictions
in place

C8 Record restrictions on
international travel

0- no restrictions
1- screening arrivals
2- quarantine arrivals from some
or all regions
3- ban arrivals from some regions

H1 Record presence of
public info campaigns

0- no Covid-19 public information
campaign
1- public officials urging caution
about Covid-19
2- coordinated public information
campaign

The stringency index is divided by type of activity (study, work, enter-
tainment, commercial, etc) and public measures to contain the spread. It is a
key component of this modelling, since it can estimate and alter how isolated
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the population was in numerical ways. With that, it is possible to closely
predict how infection and recovery rates were changing during the months
of COVID-19 dealing, since the acceleration of the spread can be seen on a
daily basis.

The main source of jhu data (total number by day of confirmed, recov-
ered and fatal cases) of the CovsirPhy package is the COVID-19 Data Hub
[22]. From this hub, the algorithm is able to collect number of confirmed,
recovered, fatal and tested individuals daily for any region of the world, that
was previously uploaded.

In the case of Brazil the state and federal governments have the responsi-
bility on the COVID-19 counter measures, although the most of the decisions
were made in state level. Each state government made different decisions on
the restrains and quarantine of the population. Originally there was no syn-
chronised official data for the state of Espírito Santo in the Data Hub, so the
upload of the official state panel [17] to their data sources was necessary. As
soon as the line list obtained from our local government got connected to the
COVID-19 Data Hub [22], the CovsirPhy library can download the Espírito
Santo numbers as the base source of data to run the model.

Once the data of Espírito Santo, previously uploaded in the COVID-19
Data Hub [22], is downloaded by the CovsirPhy library for usage, its isolation
parameters and stringency index are automatically set equally to the Brazil-
ian ones in the Hub. This peculiarity compromises the proper simulation of
the model since each state inside Brazil had different social isolation mea-
sures and, therefore, must have different parameters as well. To solve this
situation, the values of isolation parameters are adjusted so to match the val-
ues that represent the non-pharmaceutical measures applied inside Espírito
Santo. This adjustment allows a recalculation of the stringency index and it
was done following the official policies and decrees that were submitted dur-
ing the pandemic. This situation will also permit the comparison between
the scenario of the state with national parameters with the adjusted one,
allowing to analyse how the social distancing measures of the state applied
on the Brazilian average.

The aim of adjusting the isolation quantitative variables that compose
the stringency index is to proper understand the effects of the government
policies and decrees in the numbers. This can be seen due to the fact that
these variables, through the stringency index (I), change the rates α, β and
γ. This change in the rates is the key tho separate the spread in phases,
therefore, allowing the analysis and illustration of each time frame during
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the COVID-19 outbreak, and the comparison between them.
The CovsirPhy package has multiple classes and subpackages to handle

COVID-19 SIR model, with many options of study and different models for
analysis. At Methods, Section 8, we discuss how we transformed our data
and how these numbers were extracted from OxCGRT [23]and Datahub.io
[21].

7. Data

In the context of the Brazilian outbreak and reliable data for the Espírito
Santo state, the most precise data was the one from the governmental panel
[17], therefore it was the one used in this study.

The panel of Espírito Santo was developed by making it accessible online
the information that the medical facilities were already gathering before the
panel was created [17]. It has a bottom-up methodology, which means it is
a more automatic process for the hospitals and clinics to provide the data,
although it is not the optimal approach in order to correctly collect and study
the data.

To be able to apply this data properly it was necessary to upload it in the
worldwide data hub [22]. By doing so the data can be used in the CovsirPhy
library, not only for this research but for anyone that seeks it.

The Panel of Espírito Santo [17] was uploaded to the main database,
allowing anyone who accesses the hub to study how numbers and the scenario
evolved in the reality reported. Making the data available allowed the proper
use of all functions inside the library with the Espírito Santo’s numbers, which
was key to the study

In order to properly seek the right data and correctly propose conclusions
by using the Espírito Santo’s data in a way viable to the SIRD model, it was
necessary to analyse other countries data [52] and compare it to the local one
[17]. Parallel to the comparison its was necessary to identify the variables
[53] to develop a deeper understanding on non-pharmaceutical measures to
slow the disease outbreak. By doing so it was possible to identify topics and
variables inside the model that suited the best the research with the available
material.

Based on this reality, the model needed adaptations and merge of official
information in order to provide the accurate data necessary. When uploaded
to the Data Hub, the state data is automatically associated with the social
distancing indicators, previously shown on Tab. 4, set for Brazil in the hub.
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To make the simulation more accurate, the indicators C1 to C8 and H1, that
are not bound by country level measures, were altered to match the social
distancing data provided by the government weekly through the risk map,
Fig. 3, and the official decrees, Tab. 2. All the decrees, risk maps and official
information on the pandemic policies were made available by the government
in the official COVID-19 panel [17].

The time frame of our data begins in March 22, 2020, before the first
confirmed case in the State in March. 5 2020, and goes until the April 28,
2021. The data were used as they were, and no gaps were filled with any
interpolated values in order to complete the time series.

In this research, to proper simulate the SIRD algorithm with the data
available, parameters such as immunity prior to the pandemic, vaccination
at birth or any other vaccine related parameter were not used, since there
was no vaccine for the virus while most of the data was collected and, even
after the development of the vaccine, the State did not have a reasonable
number of vaccinated people.

Inside CovsirPhy package, the main procedure downloads the data and
use it for modelling by extracting the variables from both COVID-19 Data
Hub [14] and Oxford Government Tracker [23]. By doing that, it generates an
CSV (comma-separated values) file called covid19dh.csv . It contains these
variables, ranked by day and province from the whole world, since beginning
of January 2020 until today. The file has the following information:

• Observation Date

• Tests

• Confirmed

• Deaths

• Population

• ISO3

• Province/State

• Country/Region

• Covid policy trackers (C1 − C8 and H1)
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• Stringency index (I)

In the first part, the raw data, is extracted from the COVID-19 Data
Hub and, as the Espírito Santo’s Government panel was implemented, it is
synchronised with current confirmed numbers. The second part defines how
isolated each province was at that particular day. Therefore, the CovsirPhy
package is able to calculate the stringency index necessary for the modelling.

As mentioned before, the isolation parameters encountered in this database
had the same values for both Espírito Santo and Brazil. Knowing that this
was inconsistent with reality, the parameters had to be recalculated in order
to correctly continue the analyses. By following the index guide provided
and comparing with government decisions, a CSV file with different isolation
parameters for Espírito Santo was manually created.

That decision is very useful in order to compare different approaches
on isolation and how reliable is the quarantine reality for the whole coun-
try. The method to use the altered variables was to replace the generated
covid19dh.csv file with a fixed one, and disallow the CovsirPhy to update
the downloaded database.

Splitting and distributing the data within the time frame is key to cor-
rectly model and explain scenarios. These partitions are called phases, and
they are pre-established by the algorithm in order to calculate different rates
for each reality. Therefore, months that do not have similar restrictions are
placed in different phases and have different rates.

Moreover, phases can also be defined by the user, allowing the library to
proper estimate rates when isolation really occurred inside the state. Having
a fewer quantity of time frames permits better comparisons, as it is more
concrete to see which isolation measure impacted best. On the other hand,
a broader quantity of phases permits better analysis of how the rates were
slightly changing through time.

8. Methods

The tool chosen to model the Espírito Santo’s reality was the CovsirPhy
package. The utilisation of this library is briefed here, as the Python source
code can be obtained inside our GitHub. The aim is to explain how data
was transformed inside the code and which results were gathered through
the process. For the purpose of replication and broader understanding of
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this article, a GitHub 2 repository containing all necessary CSV and Python
source files was created, including all graphs and tables generated in the
process. For the experiments, we used Python version 3.8.9 and CovsirPhy
package version 2.18.0, both updated 28th of April, 2021.

Before any usage of the data the upload of the COVID-19 panel of Espírito
Santo was made into the COVID-19 Data Hub.

8.1. Scenario 1: Brazil’s generic isolation parameters
The first scenario is carried out with the existing Brazilian generic isola-

tion parameters directed downloaded from the Data Hub, and its complete
process is shown in Fig 5. Our time frame is from 22nd March 2020 to 28th
April 2021.

CovsirPhy
Library

Import CovsirPhy
Library Covid-19 

Data Hub

Dowload  
selected data

Check Records
and dowload files

GitHub 
repository

Graph and model
generation

Figure 5: Schematic of the first scenario.

2https://github.com/guilhermegfv/CovsirPhy-bra-es
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Initially, the algorithm downloads the data from the Data Hub. The
Hub extracts information about confirmed cases from the Panel ES [17] and
the isolation parameters from the Oxford source [23]. The libraries required
to run the CovsirPhy are updated and all requirements declared inside its
Kaggle code-book are satisfied.

The Python code loads data for country and province set to Brazil and
Espírito Santo. An instance is created called esscenario that will carry out
the data necessary for the modelling. All the required graphs are generated,
as well as tables with the correspondent values.

The first graph that is generated is the S-R trend. It is the first signal of
how phases were defined for the execution. The code produces an automatic
separation of the phases - resulting in 32 time frames - which can be later
manually altered. The parameters (α, β and γ) are calculated for each phase
based on the data and on variation of the stringency index by interactions
of the algorithm. No time out for the estimating was set, as we seek the
optimal results.

A table with all parameter values is downloaded for comparison. The
basic reproductive number R0 for each phase is calculated and, by utilising
the parameters for the last phase, the model is able to predict future scenar-
ios. For this article, the simulations continued for 60 days starting from 28
April, 2021. Lastly, a table with the isolation values used for the modelling
is downloaded.

In this first scenario, we used the standard isolation values downloaded
from the Oxford Government Tracker. It mimics the values set for all Brazil.
There are the 9 parameters of isolation (C1-C8, H1) and the calculated strin-
gency index.

8.2. Scenario 2: Espírito Santo’s specific isolation parameters
The second scenario schematic is shown in Fig. 6. For this scenario, the

stringency index (I) changes due to the adjusting of the parameters that
compose it (C1 −C8 and H1). We altered the covid19dh.csv file with these
values adjusted to better suit Espírito Santo’s reality. The aim is that, by
providing the proper numeric quantification of how isolated the state was,
the rates and our conclusions will be more accurate.

The CSV file contains columns for each parameter and the stringency
index all ranked by day, making it 402 days of analysis and 402 lines of
data. This way each day of the time frame can have different values for the
parameters and for the stringency index, consequently. All the adjusting done
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for the second scenario was based on official data and information provided
by the government via the COVID-19 panel.

The argument update_interval of cs.DataLoader is set to prevent down-
load of new data.

.

CovsirPhy
Library

Import CovsirPhy
Library Covid-19 

Data Hub

Dowload  
selected data

Check Records
and dowload files

GitHub 
repository

Adjust of 
stringency index

parameters 

Graph and model
generation

Figure 6: Schematic of the second scenario, where the altering in the index stringency
parameters was made.

9. Results

The SIRD mode focus on evaluating how the groups of population, sus-
ceptible (S), infected (I), recovered (R) and deaths (D), evolved through
time. At day 0, the whole population can be considered as Susceptible, ig-
noring immunity variables, such as birth immunity and vaccination. The
main graph of S-R trend allows us to understand toll of the disease on the
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total population by exposing the daily raw numbers, the results for the first
and second run are shown respectively in Fig.7 and Fig.8.

The graph shows the detection of 31 phases for the first scenario and
32 for the second, the curve of susceptible-recovery translates how infection
and recovery was happening. The faster the number of susceptible people
are decreasing, the more infectious the spread currently is. Therefore, by
analysing any given point in the curve, we can understand the direction
of the pandemic through the tangent of that same given point. The more
vertical the tangent values of the selected time, the faster the infection is
happening. This graph is similar for both runs, it is natural due to the fact
that the raw numbers for the variables are the same, the main change is the
variation in the numbers and length of phases. The library automatically
defines phases based in the parameters through time.

The plotted epidemic curves are in Fig. 9 for the first and Fig. 10 for
the second run. These graphs estimate 60 days of spread with the current
parameters of isolation - rates detected at last phase - and then plot values
of confirmed, infected and fatal cases for this time frame. Therefore, by
persisting the same quarantine restrictions that are being applied at 28th
April 2021, the pandemic is bound to reduce its spread.
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Figure 7: Susceptible-Recovered Trend with defined phases - Scenario 1

Figure 8: Susceptible-Recovered Trend with defined phases - Scenario 2
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Figure 9: Epidemic curves for generic isolation parameters

To better compare both scenarios a comparison graph for the prediction of
confirmed cases was plotted, as seen in Fig. 11. The prediction is made based
on the last identified phase of each model. This variation makes reassures
how the set of parameters alter the model, therefore proving that the correct
use of parameters increase the accuracy of the model.

By quantifying the interactions between the phases, the model provides
numerical values for the rates (α, β and γ) that govern the movement of
the individuals from one population to another. This result is displayed as a
CSV file, following the library default settings, and as a graph. This graph is
a key point of the method, as shown in Fig.12 for the Scenario 1 and Fig.13
for the Scenario 2, the rates in each phase are the link to the understanding
of the government policies, as these policies are the origin of the parameters
fluctuation.
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Figure 10: Epidemic curves for specific isolation parameters

To better analyse how the rates of infection (α) and lethality (γ) correlate,
an amplified graph of the rates in the specific isolation parameters scenario
is generated and shown on Fig. 14.

This closer look exposes the accelerated evolution of the infection rate in
the first weeks of the pandemic due to the few policies put in place at that
time. The infection rate starts high until May. 2020, then the effects of the
quarantine that started in the previous weeks is noticeable. By October rules
of social restrictions were reduced due to the continuously falls of the lethality
rate in the previously months. Following this loose on the restrictions, we
face the growth of α and γ. This correlation reaffirms the impact of the
social distancing, and, therefore, the importance of the stringency index, in
the reality of the outbreak.

The rates of lethality (γ) peaks in the end of May, when the quarantine
had just reached the length of ten weeks. This effect is due to the low ca-
pacity of the health system, that led to a overcrowding of ICU beds. The
low availability of respiratory equipment and little testing also played a hole
in the development of this scenario. After the peak, the lethality lowered
until November. During the first months of 2021 the public and governmen-
tal perception was that the situation was under control, but, following the
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Figure 11: Confirmed cases predictions comparison between scenario 1 and 2

national holiday of Carnival (15, 16 and 17 of February, 2021), the infection
rate started a new upraising that led to another ICU availability crisis, even
though the infection rate reached only seventy per cent of what it was in
May, 2020 [17]. This new near-collapse lead to a new increase of the lethality
rate.

The recovery rate (β) evolves continuously until December,2020, it has
peaks during the end of May and August during this stretch, reaching its
highest values in December and November. In the end of December, 2020,
there is a decrease in the parameter, reaching a very low value in late March,
2021. This observation leads, once more, to the understanding that loosening
the social distancing measures in the beginning of 2021 was a hasty decision.

The basic reproductive number (R0) varies from phase to phase as seen in
Fig. 15 for the first run and Fig.16 for the second one. For a proper variation
analysis of (R0) in the second run a zoomed version of the original graph,
shown on Fig.17 was plotted.
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Figure 12: Rates of infection α, recovery β and lethality γ through time - Scenario 1

Figure 13: Rates of infection α, recovery β and lethality γ through time - Scenario 2
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Figure 14: Rates of infection α, recovery β and lethality γ through time for Scenario 2,
zoomed in for better analysis

The basic reproductive number value during a phase represents how con-
tagious the disease was at that stretch. The high value is due the increase
in the number of infected people in the beginning of the outbreak, once this
number stabilises and the situation is more under control, (R0) stabilises as
well, but does not stop oscillating. The effects of the quarantine are visible
with the big decrease between July and August. After the loose on the re-
strictions in the beginning of 2021, R0 rises until the social distancing policies
begin to harden again.

A complete graph for scenario 2 is plotted to better analyse the devel-
opment of the variables. The graph is seen in Fig. 18. The number of
susceptible and recovered individuals is plotted on the right y axis and the
infected and fatal ones in the left y axis, this is done in order to proper
visualise the graph since the values of S and R are greatly bigger than the
others. It is clear when looking at the development of the infected numbers
that the disease spreads in waves, this waves are created by the variations on
social isolation and counter measures. The late apex of the infected number
can be explained by the arrival of new variations of the virus in the state in
mid March, 2021.
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Figure 15: Basic Reproductive Number (R0) for each phase through time in the first
scenario

10. Conclusion and Future work

The objective is to understand and provide explanations regarding the
use of Espírito Santo’s COVID- 19 data and the non-pharmaceutical gov-
ernmental social distancing policies during the outbreak. The use of a SIRD
model, through the CovsirPhy library, allowed the simulation of the outbreak
scenario and, by adjusting the parameters of the stringency index (I) within
the model, more precise results were exposed. For this larger objective to
be achieved the upload of the states COVID-19 panel was previously made.
This achieved milestone enabled not only this research, but any other study
that permeate Espírito Santos data on the pandemic.

With the presented results it was possible to link the government non-
pharmaceutical official measures with the rates of infection (α), recovery (β)
and lethality (γ). Although is hard to observe a specific link between one
given measure and the change of the rates, given the complexity of the disease
and the overwhelming variables, the effects of a group of measures, such as a
full lockdown quarantine contemplating many of them at the same time, are
clearly observable. It is clear now that these big measures have deep impact
in the spread of the disease and its tool on the population. Granting all this,
this research did not take in account the social and economic impacts of this
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Figure 16: Basic Reproductive Number (R0) for each phase through time in the second
scenario

Figure 17: Basic Reproductive Number (R0) for each phase through time in the second
scenario, zoomed version
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Figure 18: Complete graph for the scenario 2, with Recovered and Susceptible on the right
y axis and Infected and Fatal on the left y axis.

measures.
Facing the comparison of the simulations having the same data source,

however variations in its parameters for social-distancing, it becomes clear
that, due to the fact that most of the counter measures to combat the pan-
demic are decisions of the state governments, Brazil has a big population,
vast national territory and other geographical reasons, it is complex to define
social-distancing parameters that represent the reality for the whole country
as one. To dismember Brazil in states and using specific parameters when
dealing with its COVID-19 data enables more precise results, therefore more
accurate predictions.

During the development of this research new possible applications of this
methodology appeared in the horizon. Replicating the process in a variety of
states and then comparing the results would bring new light to the knowledge
of which non-pharmaceutical decisions are more effective in the Brazilian
context. It would also allow to compare the governments of different states
under, not only raw numbers and public perception, but more detailed data.
Unfortunately, the spectrum only reached the Espírito Santo state, although
enhanced the visibility and transparency of the Brazilian data academically.

Looking at the results a distinct variable may have influenced the pa-
rameters of the outbreak. The available ICU bed at a given point in time
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might interfere deeply in the lethality rate (γ), not only on that given point
in time, but also in the following weeks. With this given possibility, studies
containing ICU beds availability, and how it affected the number of deaths,
can bring a profounder comprehension of the pandemic.

Despite the fact that reinfection by COVID-19 is still not fully studied,
it has been a clear fact that it happens. we believe that the development
of a research making use of a SIR based model that is able to analyse and
simulate data with this reinfection parameter would rise the accuracy of
the predictions. The fact that the Brazilians not always complied with the
governmental measures taking place also are not taking in account, the rates
in which the population respected and followed the government restrictions
and guidelines can be explored in future works.
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